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Single-cell genomics provides an unprecedented view of the 
cellular makeup of complex and dynamic systems. Single-cell 
transcriptomic approaches in particular have led the techno-

logical advances that allow unbiased charting of cell phenotypes1. 
The latest improvements in scRNA-seq allow these technologies 
to scale to thousands of cells per experiment, providing compre-
hensive profiling of tissue composition2,3. This has led to the iden-
tification of new cell types4–6 and the fine-grained description of 
cell plasticity in dynamic systems, such as development7,8. Recent 
large-scale efforts, such as the Human Cell Atlas (HCA) project9, are 
attempting to produce cellular maps of entire cell lineages, organs 
and organisms10,11 by conducting phenotyping at the single-cell 
level. The HCA project aims to advance our understanding of tis-
sue function and to serve as a reference for defining variation in 

human health and disease. In addition to methods that capture the 
spatial organization of tissues12,13, the main approach being used is 
scRNA-seq analysis of dissociated cells. Therefore, tissues are disag-
gregated and individual cells captured either by cell sorting or using 
microfluidic systems1. In sequential processing steps, cells are lysed, 
the RNA is reverse transcribed to complementary DNA, amplified 
and processed to sequencing-ready libraries.

Continuous technological development has improved the scale, 
accuracy and sensitivity of scRNA-seq methods, and now allows us 
to create tailored experimental designs by selecting from a plethora 
of different scRNA-seq protocols. However, there are marked differ-
ences across these methods, and it is not clear which protocols are best 
for different applications. For large-scale consortium projects, expe-
rience has shown that neglecting benchmarking, standardization  

Benchmarking single-cell RNA-sequencing 
protocols for cell atlas projects
Elisabetta Mereu1,26, Atefeh Lafzi1,26, Catia Moutinho1, Christoph Ziegenhain   2, Davis J. McCarthy3,4,5, 
Adrián Álvarez-Varela6, Eduard Batlle6,7,8, Sagar9, Dominic Grün   9, Julia K. Lau10, 
Stéphane C. Boutet10, Chad Sanada11, Aik Ooi11, Robert C. Jones   12, Kelly Kaihara13, Chris Brampton13, 
Yasha Talaga13, Yohei Sasagawa14, Kaori Tanaka14, Tetsutaro Hayashi14, Caroline Braeuning15, 
Cornelius Fischer   15, Sascha Sauer15, Timo Trefzer16, Christian Conrad16, Xian Adiconis17,18, 
Lan T. Nguyen17, Aviv Regev   17,19,20, Joshua Z. Levin   17,18, Swati Parekh   21, Aleksandar Janjic   22, 
Lucas E. Wange   22, Johannes W. Bagnoli22, Wolfgang Enard   22, Marta Gut1, Rickard Sandberg   2, 
Itoshi Nikaido   14,23, Ivo Gut   1,24, Oliver Stegle3,4,25 and Holger Heyn   1,24 ✉

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in 
a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs 
and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, 
and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to 
systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a 
multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous 
reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed 
in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration 
into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as 
the Human Cell Atlas.

NATuRE BIOTECHNOLOGY | VOL 38 | JUNE 2020 | 747–755 | www.nature.com/naturebiotechnology 747

mailto:holger.heyn@cnag.crg.eu
http://orcid.org/0000-0003-2208-4877
http://orcid.org/0000-0002-3364-5898
http://orcid.org/0000-0001-7235-9854
http://orcid.org/0000-0003-0329-2435
http://orcid.org/0000-0003-3293-3158
http://orcid.org/0000-0002-0170-3598
http://orcid.org/0000-0002-4826-1651
http://orcid.org/0000-0001-7180-5381
http://orcid.org/0000-0002-3275-9156
http://orcid.org/0000-0002-4056-0550
http://orcid.org/0000-0001-6473-1740
http://orcid.org/0000-0002-7261-2570
http://orcid.org/0000-0001-7219-632X
http://orcid.org/0000-0002-3276-1889
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-020-0469-4&domain=pdf
http://www.nature.com/naturebiotechnology


AnAlysis NATuRe BIoTeCHNology

and quality control at the start can lead to major problems later on 
in the analysis of the results14. Thus, success depends critically on 
implementing a high common standard. A comprehensive compar-
ison of available scRNA-seq protocols will benefit both large- and 
small-scale applications of scRNA-seq.

The available scRNA-seq protocols vary in the efficiency of RNA-
molecule capture, which results in differences in sequencing library 
complexity and the sensitivity of the method to identify transcripts 
and genes15–17. There has been no systematic testing of how their 
performance varies between cell types, and how this affects the 
resolution of cell phenotyping in complex samples. In the present 
study, we extend previous efforts to compare the molecule-capture 
efficiency of scRNA-seq protocols15,16 by systematically evaluating 
the capability of these techniques to describe tissue complexity and 
their suitability for creating a cell atlas. We performed a multicenter 
benchmarking study to compare scRNA-seq protocols using a uni-
fied reference sample resource. Our reference sample contained: (1) 
a high degree of cell-type heterogeneity with various frequencies, 
(2) closely related subpopulations with subtle differences in gene 
expression, (3) a defined cell composition with trackable markers 
and (4) cells from different species. By analyzing human periph-
eral blood and mouse colon tissue, we have covered a broad range 
of cell types and states from cells in suspension and solid tissues, 
to represent common scenarios in cell atlas projects. We have also 
added spike-in cell lines to allow us to assess batch effects, and have 
combined different species to pool samples into a single reference. 
We performed a comprehensive comparative analysis of 13 different 
scRNA-seq protocols, representing the most commonly used meth-
ods. We applied a wide range of different quality control metrics 
to evaluate datasets from different perspectives, and to test their 
suitability for producing a reproducible, integrative and predictive 
reference cell atlas.

We observed striking differences among protocols in converting 
RNA molecules into sequencing libraries. Varying library complexi-
ties affected the protocol’s power to quantify gene expression lev-
els and to identify cell-type markers, a trend consistently observed 
across cell and tissue types. This critically impacted on the resolution 
of tissue profiles and the predictive value of the datasets. Protocols 
further differed in their capacity to be integrated into reference tis-
sue atlases and, thus, their suitability for consortium-driven projects 
with flexible production designs.

Results
Reference sample and experimental design. We benchmarked 
current scRNA-seq protocols to inform the methodological selec-
tion process of cell atlas projects. Ideally, methods should: (1) be 
accurate and free of technical biases, (2) be applicable across dis-
tinct cell properties, (3) fully disclose tissue heterogeneity, including 
subtle differences in cell states, (4) produce reproducible expression 
profiles, (5) comprehensively detect population markers, (6) be 
integratable with other methods and (7) have predictive value with 
cells mapping confidently to a reference atlas.

For a systematic comparison of protocols, we designed a refer-
ence sample containing human peripheral blood mononuclear cells 
(PBMCs) and mouse colon, which are tissue types with highly het-
erogeneous cell populations, as determined by previous single-cell 
sequencing studies18,19. In addition to the well-defined cell types, 
the tissues contain cells in transition states (for example, colon 
transit-amplifying (TA) or enterocyte progenitor cells) that show 
transcriptional differences during their differentiation trajectory20. 
The reference sample also included a wide range of cell sizes (for 
example, B cells: ~7 µm; HEK293 cells: ~15 µm) and RNA content, 
which are key parameters that affect performance in cell capture 
and library preparation. Interrogation of tissues from different spe-
cies allowed us to pool a large variety of cell types in a single refer-
ence sample to maximize complexity while minimizing variability  

introduced during sample preparation. In addition to the intra-tis-
sue complexity, the fluorescence-labeled, spiked-in cell lines allowed 
us to monitor cell-type composition during sample processing, and 
to identify batch effects and biases introduced during cell capture 
and library preparation.

Specifically, the reference sample contained (estimated percent-
age viable cells): PBMCs (60%, human), colon cells (30%, mouse), 
HEK293T cells (6%, red fluorescent protein (RFP)-labeled human 
cell line), NIH3T3 cells (3%, green fluorescent protein (GFP)-
labeled mouse cells) and MDCK cells (1%, TurboFP650-labeled dog 
cells) (Fig. 1). To reduce variability due to technical effects during 
library preparation, the reference sample was prepared in a single 
batch, distributed into aliquots of 250,000 cells and cryopreserved. 
We have previously shown that cryopreservation is suitable for sin-
gle-cell transcriptomic studies of these tissue types21. For cell cap-
ture and library preparation, the thawed samples underwent FACS 
to remove damaged cells and physical doublets (see the next section 
for detailed analysis of cell viability sorting).

A reference dataset for benchmarking experimental and com-
putational protocols. To obtain sufficient sensitivity to capture 
low-frequency cell types and subtle differences in the cell state, we 
profiled ~3,000 cells with each scRNA-seq protocol. In total, we pro-
duced datasets for five microtiter plate-based methods and seven 
microfluidic systems, including cell-capture technologies based on 
droplets (four), nanowells (one) and integrated fluidic circuits, to 
capture small (one) and medium (one)-sized cells (Fig. 1 and see 
Supplementary Table 1). We also included experiments to produce 
single-nucleus RNA-sequencing (snRNA-seq) libraries (one), and 
an experimental variant that profiled >50,000 cells to produce a 
reference of our complex sample. The unified sample resource and 
standardized sample preparation (see Methods) were designed 
largely to eliminate sampling effects and allow the systematic com-
parison of scRNA-seq protocol performance.

To compare the different protocols, and to create a resource for 
the benchmarking and development of computational tools (for 
example, batch effect correction, data integration and annotation), 
all datasets were processed in a uniform manner. Therefore, we 
designed a streamlined, primary data-processing pipeline tailored to 
the peculiarities of the reference sample (see Methods). Briefly, raw 
sequencing reads were mapped to a joint human, mouse and canine 
reference genome, and separately to their respective references to 
produce gene count matrices for subsequent analysis (accession no. 
GSE133549). Overall, we detected human, mouse and canine cell 
numbers consistent with the composition design of the reference 
sample (Fig. 1). However, some protocols varied markedly from 
the expected frequencies in human (34–95%), mouse (4–66%) and 
canine (0–9%) cells. Although the reference sample was prepared 
in a standardized way, we cannot entirely exclude the introduction 
of composition variability during sample handling. Thus, the sub-
sequent evaluation of protocol performance was performed on cell 
types and states common to all protocols.

Notably, we observed a higher fraction of mouse colon cells in 
unsorted (Chromium) and the snRNA-seq datasets (Chromium 
(sn)). This probably results from damaging the more fragile colon 
cells during sample preparation, resulting in proportionally fewer 
colon cells when selecting for cell viability. To test whether this 
composition bias in scRNA-seq can be avoided by skipping via-
bility selection, we generated matched datasets either selecting or 
not selecting for intact cells. After quality control the detection of 
mouse colon cells increased proportionally without viability selec-
tion (51% versus 19%), with good-quality cells showing compa-
rable library complexity in both libraries (for example, numbers of 
detected genes; see Supplementary Figs. 1 and 2). However, con-
siderably more cells were removed during quality filtering (44% 
versus 15%), and this is a source of unwanted sequencing costs that 
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must be taken into account, especially for tissues with high cell 
damage. Consequently, replacing viability staining with thorough 
in silico quality filtering in cell atlas experiments might better con-
serve the composition of the original tissue, but result in higher 
sequencing costs.

The canine cells, spiked-in at a low concentration, were detected 
by all protocols (1–9%) except gmcSCRB-seq. Furthermore, the dif-
ferent methods showed notable differences in mapping statistics 
between different genomic locations (Fig. 1). As expected, due to 
the presence of unprocessed RNA in the nucleus, the snRNA-seq 
experiment detected the highest proportion of introns, although 
scRNA-seq protocols also showed high frequencies of intronic and 
intergenic mappings. The increased detection of unprocessed tran-
scripts in CEL-seq2 may be due to a freezing step (−80 °C) after cell 
isolation and subsequent denaturation at high temperatures (95 °C), 
which could favor the accessibility of nuclear and chromatin-bound 
RNA molecules.

Molecule-capture efficiency and library complexity. We produced 
reference datasets by analyzing 30,807 human and 19,749 mouse 
cells (Chromium v.2; Fig. 2a–c). The higher cell number allowed 
us to annotate the major cell types in our reference sample, and to 
extract population-specific markers (see Supplementary Table 2).  

It was noteworthy that the reference samples solely provided the 
basis to assign cell identities and gene marker sets, and were not 
used to quantify the method’s performance. This strategy ensured 
that the choice of technology for deriving the reference does not 
influence downstream analyses. Cell clustering and reference-
based cell annotation showed high agreement (average 83%; see 
Supplementary Table 3), and only cells with consistent annotations 
were used subsequently for comparative analysis at the cell-type 
level. The PBMCs (human) and colon cells (mouse) represented 
two largely different scenarios. Although the differentiated PBMCs 
clearly separated into subpopulations (for example, T/B cells, 
monocytes; Fig. 2b, and see Supplementary Figs. 3a and 4a–d), 
colon cells were ordered as a continuum of cell states that differ-
entiate from intestinal stem cells into the main functional units of 
the colon (that is, absorptive enterocytes and secretory cells; Fig. 2c, 
and see Supplementary Figs. 3b and 5a–d). Notably, the subpopula-
tion structure of our references was largely consistent with that of 
published datasets for human PBMCs18 and mouse colon cells22 (see 
Supplementary Figs. 6 and 7). After identifying major subpopula-
tions and their respective markers in our reference sample, we clus-
tered the cells of each sc/snRNA-seq protocol and annotated cell 
types using matchSCore2 (see Methods). This algorithm allows a 
gene marker-based projection of single cells (cell by cell) on to a 
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Fig. 1 | Overview of the experimental design and data processing. The reference sample consists of human PBMCs (60%), and HEK293T (6%), mouse 
colon (30%), NIH3T3 (3%) and dog MDCK cells (1%). The sample was prepared in one single batch, cryopreserved and sequenced by 13 different sc/
snRNA-seq methods. Sequences were uniformly mapped to a joint human, mouse and canine reference, and then separately to produce gene expression 
counts for each sequencing method.
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reference sample and, thus, the identification of cell types in our 
datasets (see Supplementary Figs. 8 and 9).

To compare the efficiency of messenger RNA capture between 
protocols, we down-sampled the sequencing reads per cell to a com-
mon depth and stepwise-reduced fractions. Stochasticity introduced 
during down-sampling did not affect the reproducibility of the 
results (see Supplementary Fig. 10). Library complexity was deter-
mined separately for largely homogeneous cell types with markedly 
different cell properties and function, namely human HEK293T 
cells, monocytes and B cells (Fig. 2d,e), and mouse colon secretory 
and TA cells (see Supplementary Fig. 11a,b). We observed large dif-
ferences in the number of detected genes and molecules across the 
protocols, with consistent trends across cell types and gene quan-
tification strategies (see Supplementary Fig. 11c,d). Notably, some 
protocols, such as Smart-seq2 and Chromium v.2, performed better 
with higher RNA quantities (HEK293T cells) compared with lower 
starting amounts (monocytes and B cells), suggesting an input-sen-
sitive optimum. Considering the different assay versions and appli-
cation types of the Chromium system, a dedicated analysis showed 

increased detection of molecules and genes from nuclei to intact 
cells and toward the latest protocol versions (see Supplementary  
Fig. 12). Consistent with the variable library complexity, the proto-
cols presented large differences in dropout probabilities (Fig. 2f), 
with Quartz-seq2, Chromium v.2 and CEL-seq2 showing consis-
tently lower probability. Note that, despite the considerable differ-
ences between protocols, we observed a generally high technical 
reproducibility within the methods (see Supplementary Fig. 13).

Technical effects and information content. We further assessed the 
magnitude of technical biases, and the protocol’s ability to describe 
cell populations. To quantify the technical variation within and 
across protocols, we selected highly variable genes (HVGs) across 
all datasets, and plotted the variation in the main principal compo-
nents (PCs; Fig. 3a). Using the down-sampled data for HEK293T 
cells, monocytes and B cells, we observed strong protocol-specific 
profiles, with the main source of variability being the number of 
genes detected per cell (Fig. 3b). Data from snRNA-seq did not 
show notable outliers, indicating conserved representation of the 

a

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

b

c

Human reference

Mouse reference

d

e

f

HEK293T cells

N
o.

 o
f d

et
ec

te
d 

ge
ne

s
N

o.
 o

f d
et

ec
te

d 
ge

ne
s

D
ro

po
ut

 p
ro

ba
bi

ty

HEK293T cells B cells

Expression magnitudeExpression magnitudeExpression magnitude

CEL-seq2

MARS-seq

Quartz-seq2

gmcSCRB-seq

Smart-seq2

C1HT-small

C1HT-medium

Chromium

Chromium (sn)

ddSEQ

Drop-seq

ICELL8

inDrop

Cell type

Cell type

B cell

6,000

4,000

2,000

1,000

500

6,000

8,000

4,000

2,000

1.0

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 2 4 86

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

5,
00

0

50
,0

00

10
,0

00
15

,0
00

20
,0

00

5,
00

0

50
,0

00

10
,0

00
15

,0
00

20
,0

00

5,
00

0

50
,0

00

10
,0

00
15

,0
00

20
,0

00

3,000

4,000

2,000

1,000

6,000

4,000

2,000

CD14
+
 monocyte

CD4
+
 T cell

CD8
+
 T cell

Dendritic cell
FCGR3A

+
 monocyte

HEK293T cell
NK cell
Megakaryocyte

Enterocyte 1
Enterocyte 2
Enterocyte progenitor
Enteroendocrine
Fibroblast
Immune cell
Secretory cell
Stem cell
TA cell

B cellsMonocytes

Monocytes

HEK293T cells B cellsMonocytes

No. of reads No. of reads No. of reads

Fig. 2 | Comparison of 13 sc/snRNA-seq methods. a, Color legend of sc/snRNA-seq protocols. b, UMAP of 30,807 cells from the human reference sample 
(Chromium) colored by cell-type annotation. c, UMAP of 19,749 cells from the mouse reference (Chromium) colored by cell-type annotation. d, Boxplots 
displaying the minimum, the first, second and third quantiles, and the maximum number of genes detected across the protocols, in down-sampled 
(20,000) HEK293T cells, monocytes and B cells. Cell identities were defined by combining the clustering of each dataset and cell projection on to the 
reference. e, Number of detected genes at stepwise. down-sampled, sequencing depths. Points represent the average number of detected genes as a 
fraction of all cells of the corresponding cell type at the corresponding sequencing depth. f, Dropout probabilities as a function of expression magnitude, 
for each protocol and cell type, calculated on down-sampled data (20,000) for 50 randomly selected cells.

NATuRE BIOTECHNOLOGY | VOL 38 | JUNE 2020 | 747–755 | www.nature.com/naturebiotechnology750

http://www.nature.com/naturebiotechnology


AnAlysisNATuRe BIoTeCHNology

transcriptome between the cytoplasm and the nucleus. To quantify 
the protocol-related variance, we identified the PCs that correlated 
with the protocol’s covariates in a linear model23. Indeed, the vari-
ance in the data was mainly explained by the protocols (HEK293T 
cells = 37.3%, monocytes = 52.8% and B cells = 36.2%), a value that 
was reduced in HEK293T cells and monocytes when considering 
snRNA-seq as a specific covariate (HEK293T cells = 9.7%, mono-
cytes = 22.2% and B cells = 48.3%; see Methods). The technical 
effects were also visible when using t-distributed stochastic neigh-
bor embedding (tSNE) as a nonlinear, dimensionality reduction 
method (see Supplementary Fig. 14). By contrast, the methods 
largely mixed when the analysis was restricted to cell-type-specific 
marker genes, suggesting a conserved cell identity profile across 
techniques (see Supplementary Fig. 15).

Next, we quantified the similarities in information content of 
the protocols. Again, we used the down-sampled datasets and com-
monly expressed genes and calculated the correlation between 
methods in average transcript counts across multiple cells, thus 
compensating for the sparseness of single-cell transcriptome data. 

For the three human cell types, we observed a broad spectrum of 
correlation across technologies, with generally lower correlation for 
smaller cell types (Fig. 3c). Although the transcriptome represen-
tation was generally conserved (Fig. 3a), the snRNA-seq protocol 
resulted in a notable outlier when correlating the expression levels of 
common genes across protocols, possibly driven by decreased cor-
relation of immature transcripts. Restricting the correlation analy-
sis to population-specific marker genes, we observed less variation 
between protocols (Pearson’s r = 0.5–0.7), which underlines that the 
expression of these markers is largely conserved across the methods 
(see Supplementary Fig. 16).

To further test the suitability of protocols for describing cell 
types, we determined their sensitivity to detect population-specific 
expression signatures, and found that they had remarkably variable 
power to detect marker genes. Specifically, population markers were 
detected with different accuracies (see Supplementary Figs. 17 and 
18), and the detection level varied substantially (Fig. 3d,e and see 
Supplementary Table 4). Quartz-seq2 and Smart-seq2 showed high 
expression levels for all cell-type signatures, indicating that they 
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have higher power for cell-type identification. As marker genes are 
particularly important for data interpretation (for example, annota-
tion), low marker detection levels could severely limit the interpre-
tation of poorly explored tissues, or when trying to identify subtle 
differences across subpopulations. SnRNA-seq showed generally 
lower marker detection levels. However, gene markers were selected 
from intact cell experiments, which could lead to an underestima-
tion of the performance of snRNA-seq to identify cell-type-specific 
signatures in this analysis approach.

The protocols also detected vastly different total numbers of 
genes when accumulating transcript information over multiple 
cells, with strong positive outliers observed for the smaller cell types  
(Fig. 3f). In particular, CEL-seq2 and Quartz-seq2 identified many 
more genes than other methods. Intriguingly, CEL-seq2 outper-
formed all other methods by detecting many weakly expressed 
genes; genes detected specifically by CEL-seq2 had significantly 
lower expression than the common genes detected by Quartz-seq2 
(P < 2.2 × 10−16). The greater sensitivity to weakly expressed genes 
makes this protocol particularly suitable for describing cell popula-
tions in detail, an important prerequisite for creating a comprehen-
sive cell atlas and functional interpretation.

Surprisingly, considering the increased library complexity of 
scRNA-seq compared with snRNA-seq, the latter protocol iden-
tified a similar number of genes when combining information  
across multiple cells and suggesting overall similar transcriptome 
complexity of the two compartments (see Supplementary Fig. 12).  
ScRNA-seq detected additional genes enriched in biological pro-
cesses such as organelle function, including many mitochondrial 
genes that were largely absent in the snRNA-seq datasets (see 
Supplementary Table 5).

To further illustrate the power of the different protocols to chart 
the heterogeneity of complex samples, we clustered and plotted 
down-sampled datasets in two-dimensional space (Fig. 4a) and 
then calculated the cluster accuracy and average silhouette width 
(ASW24, Fig. 4b), a commonly used measure for assessing the quality 
of data partitioning into communities. Consistent with the assump-
tion that library complexity and sensitive marker detection provide 
greater power to describe complexity, methods that performed well 
for these two attributes showed better separation of subpopulations, 
and greater ASW and cluster accuracy. This is illustrated in the 
monocytes, for which accurate clustering protocols separated the 
major subpopulations (CD14+ and FCGR3A+), whereas methods 
with low ASW did not distinguish between them. Similarly, several 
methods were able to distinguish between CD8+ and natural killer 
(NK) cells, whereas others were not.

Joint analysis across datasets. A common scenario for cell atlas 
projects is that data are produced at different sites using different 
scRNA-seq protocols. However, the final atlas is created from a 
combination of datasets, which requires that the technologies used 
be compatible. To assess how suitable it is to combine the results 
from our protocols into a joint analysis, we used down-sampled 
human and mouse datasets to produce a joint quantification matrix 
for all techniques25. Importantly, single cells grouped themselves by 
cell type, suggesting that cell phenotypes are the main driver of het-
erogeneity in the joint datasets (Fig. 5a–d, and see Supplementary 
Figs. 19a,b and 20). Indeed, the combined data showed a clear sepa-
ration of cell states (for example, T cell and enterocyte subpopula-
tions) and rarer cell types, such as dendritic cells. However, within 
these populations, differences between the protocols pointed to the 
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presence of technical effects that could not be entirely removed with 
down-sampling to equal read depth and different merging tools 
(Fig. 5e,f, and see Supplementary Figs. 19c,d, 21a,b and 22a,b). To 
formally assess the capacity of the methods to be combined, we cal-
culated the degree to which technologies mix in the merged datasets 
(Fig. 5g,h, and see Supplementary Figs. 21c,d and 22c,d). The suit-
ability of protocols to be combined (mixability) was directly corre-
lated with their power to discriminate between cell types (clustering 
accuracy). Thus, well-performing protocols result in high-reso-
lution cellular maps and are suitable for consortium-driven proj-
ects that include different data sources. When integrating further 
down-sampled datasets, we observed a drop in mixing ability (see 
Supplementary Fig. 19e). Consequently, quality standard guidelines 
for consortia might define minimum coverage thresholds to ensure 
the subsequent option of data integration. A separate analysis of the 
single-nucleus and single-cell Chromium datasets resulted in well-
integrated profiles, further supporting the potential to integrate cell 
atlases from cells and nuclei (see Supplementary Figs. 23 and 24).

Cell atlas datasets will serve as a reference for annotating cell 
types and states in future experiments. Therefore, we assessed cells’ 
ability to be projected on to our reference sample (Fig. 2b,c). We 
used the population signature model defined by matchSCore2 
and evaluated the protocols based on their cell-by-cell mapping 
probability, which reflects the confidence of cell annotation (see 
Supplementary Fig. 25a–c). Although there were some differences 

in the projection probabilities of the protocols, and a potential bias 
due to the selection of the reference protocol, a confident annota-
tion was observed for most cells with inDrop and ddSEQ reporting 
the highest probabilities. Notably, high probability scores were also 
observed in further down-sampled datasets (see Supplementary 
Fig. 25b). This has practical consequences, because data derived 
from less well-performing methods (from a cell atlas perspec-
tive), or from poorly sequenced experiments, could be identifiable  
and thus suitable for specific analysis types, such as tissue composi-
tion profiling.

Discussion
Systematic benchmarking of available technologies is a crucial pre-
requisite for large-scale projects. In the present study, we evaluated 
scRNA-seq protocols for their power to produce a cellular map of 
complex tissues. Our reference sample simulated common scenarios 
in cell atlas projects, including differentiated cell types and dynamic 
cell states. We defined the strengths and weaknesses of key features 
that are relevant for cell atlas studies, such as comprehensiveness, 
integratability and predictive value. The methods revealed a broad 
spectrum of performance, which should be considered when defin-
ing guidelines and standards for international consortia (Fig. 6).

We expect that our results will guide informed decision-mak-
ing processes for designing sc/snRNA-seq studies. There are sev-
eral features to consider when selecting protocols to produce a 
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reproducible, integrative and predictive reference cell atlas. At a 
given sequencing depth, the number and complexity of detected 
RNA molecules define the power to describe cell phenotypes and 
infer their function. There are also additional essential features 
for cell atlas projects and their interpretation, such as population 
marker identification. Improved versions of plate-based methods, 
including Quartz-seq2, CEL-seq2 and Smart-seq2, generate such 
high-resolution transcriptome profiles. Also, microfluidic systems 
showed excellent performance in our comparison, particularly the 
Chromium system. Although the scale of plate-based experiments 
is limited by the lower throughput of their individual processing 
units, microfluidic systems, especially droplet-based methods, can 
be easily applied to thousands of cells simultaneously. Protocol 
modification scales up throughput even further, and allows more 
cost-effective experiments26–29. Generally, late multiplexing meth-
ods, such as Smart-seq2, are more costly, but costs can be reduced 
by miniaturization30 and use of noncommercial enzymes31. Custom 
droplet-based protocols have lower costs than their commercialized 
counterparts, but the optimized chemistry in commercial systems 
resulted in improved performance in this comparison. Nevertheless, 
existing platforms are undergoing continued development in both 
the private (see Supplementary Fig. 12) and the academic sectors, so 
updated protocol versions promise to improve performance further. 
For consortium-driven projects, it is important to consider the inte-
gratability of data. We have shown that several protocols, including 
those with reduced library complexity and snRNA-seq, were readily 
integratable with other methods.

The use of PBMCs is ideal for multicenter benchmarking efforts; 
blood cells are easy to isolate and show a high recovery rate after 
freezing. We also included mouse colon, a solid tissue requiring dis-
sociation before scRNA-seq. Tissue digestion and cryopreservation 
of colon cells present additional challenges (for example, increased 
rate of damaged cells), which we addressed by focusing on commonly  

detected cell types. Although we observed differences in the fre-
quencies of cells from mice and humans, the composition of cell 
subtypes within tissues was conserved, reassuring the consistent 
capture of major cell types across all methods. Accordingly, subse-
quent analyses could be stratified by cell type, avoiding the need for a 
ground truth in sample composition. Furthermore, viability sorting 
with minimal mechanical forces (low speed and wide nozzle size) 
was applied to remove damaged cells and benchmark protocols with 
high-quality samples. This work standardized sample processing to 
limit technical variance in the library preparation steps, a crucial 
requisite for the multicenter benchmarking design. Nevertheless, 
on-site differences introduced during sample thawing or viability 
sorting could not be entirely excluded. However, our analysis also 
showed that viable cells selected by sorting or through thorough 
data quality control generate highly similar library complexity, sug-
gesting that potential differences in sample processing have minor 
impacts on the data quality and supporting the robustness of our 
results. Processing time presents another variable related to sample 
and data quality. Although cells are directly sorted into their respec-
tive reaction volumes for plate-based methods, processing times can 
vary across microfluidic systems. However, this was considered to 
be an inherent feature of the library preparation workflow of the 
protocols that contributes to the overall performance.

Across sample origins and cell types, all tested features pointed 
to consistent protocol performance. In addition to the differences 
in protocol performance, it was the cells’ RNA content and com-
plexity that dominated the molecule and gene detection rates, which 
we have seen through the stratified analysis of vastly different cell 
types. As such, we expect the conclusions to be valid beyond the 
human and mouse tissues tested in the present study.

Several additional steps are crucial for the success of single-cell 
projects, especially sample preparation. Optimization of sample 
procurement and tissue-processing conditions is of crucial impor-
tance to avoid composition biases and gene expression artifacts32–35 
that could limit the value of a cell atlas. Therefore, dedicated stud-
ies are required to define optimal conditions for tissue and organ 
preparation in healthy and disease contexts.

From a technical perspective, multiple steps of a protocol are 
critical for generating complex sequencing libraries. All sc/snRNA-
seq methods require multi-step, whole-transcriptome amplifica-
tion, including reverse transcription, conversion to amplifiable 
cDNA and amplification1. Theoretically, the multiplicative reaction 
efficiency of respective steps determines a method’s power to detect 
RNA molecules, and in this sense Quartz-Seq2 was particularly effi-
cient. We specifically tested for potential advantages of the Quartz-
seq2 column-based over bead-based purification, but did not detect 
differences in cDNA yield (see Supplementary Fig. 26). However, 
we observed that bead concentration critically affected the yield of 
amplified cDNA. Moreover, performance was more stable for puri-
fication with columns compared with beads, which should be taken 
into account when implementing existing or developing new sc/
snRNA-seq methods.

A further essential step toward complex libraries is the con-
version of first-strand cDNA to amplifiable cDNA. Three main 
strategies are used for this conversion: (1) template switching, (2) 
RNaseH/DNA polymerase I-mediated, second-strand synthesis for 
in vitro transcription and (3) poly(A) tagging1. Improvement of the 
three strategies led to better quantitative performance of scRNA-
seq36–39. For Quartz-Seq2 (ref. 37), improved poly(A) tagging was 
most important to increase the amplified cDNA yield compared 
with Quartz-Seq40, and probably explains the excellent result in this 
benchmarking exercise. However, optimization of the cDNA con-
version still has the potential to improve scRNA-seq methods.

Within the cDNA amplification step, increased PCR cycle num-
bers lead to PCR biases within the sequencing libraries. Early pool-
ing increases the number of cDNA molecules in the amplification  
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step and reduces PCR bias. This especially favors early pooling 
methods at low sequencing depth (as performed in the present 
study), as previously shown for bulk RNA-seq41. Similarly, in vitro 
transcription linearly amplifies cDNA with fewer biases than PCR-
based methods, and partly explains the good performance of CEL-
seq2. Furthermore, early multiplexing of different cell numbers 
leads to different PCR cycle requirements (Quartz-Seq2 with 768 
cells and 10 cycles versus gmcSCRB-seq with 96 cells and 19 cycles, 
using the same DNA polymerase for amplification). The number of 
cells per amplification pool depends on the amount of amplifiable 
cDNA, implying that the good performance of Quartz-Seq2 was 
mainly due to efficient conversion of amplifiable cDNA from RNA 
with poly(A) tagging.

It is equally important to benchmark computational pipelines for 
data analysis and interpretation23,42–44. We envision the datasets pro-
vided by our study serving as a valuable resource for the single-cell 
community to develop and evaluate new strategies for an informa-
tive and interpretable cell atlas. Moreover, the multicenter bench-
marking framework presented in the present study can readily be 
transferred to other organs where common tissue/cell types are 
analyzed using different scRNA-seq protocols (for example, brain 
atlas projects).
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Methods
Ethical statement. The present study was approved by the Parc de Salut MAR 
Research Ethics Committee (reference no. 2017/7585/I) to H.H. We adhered to 
ethical and legal protection guidelines for human participants, including  
informed consent.

Reference sample. Cell lines. NIH3T3-GFP, MDCK-TurboFP650 and HEK293-
RFP cells were cultured at 37 °C in an atmosphere of 5% (v:v) carbon dioxide in 
Dulbecco’s modified Eagle’s medium, supplemented with 10% (w:v) fetal bovine 
serum (FBC), 100 U penicillin, and 100 µg l−1 of streptomycin (Invitrogen). On 
the reference sample preparation day, the culture medium was removed and the 
cells were washed with 1× phosphate-buffered saline (PBS). Afterwards, cells 
were trypsinized (trypsin 100×), pelleted at 800g for 5 min, washed in 1× PBS, 
resuspended in PBS + ethylenediaminetetraacetic acid (EDTA) (2 mM) and  
stored on ice.

Mouse colon tissue. The colons from 11 mice (7 LGR5/GFP and 4 wild-type) 
were dissected and removed. For single-cell separation the colons were treated 
separately. The colon was sliced, opened and washed twice in cold 1× Hank’s 
balanced salt solution (HBSS). It was then placed on a Petri dish on ice and minced 
with razor blades until disintegration. The minced tissue was transferred to a 15-ml 
tube containing 5 ml of 1× HBSS and 83 µl of collagenase IV (final concentration 
166 U ml−1). The solution was incubated for 15 min at 37 °C (vortexed for 10 s every 
5 min). To inactivate the collagenase IV, 1 ml of FBS was added and it was vortexed 
for 10 s. The solution was filtered through a 70-µm nylon mesh (changed when 
clogged). Finally, all samples were combined, and the cells pelleted for 5 min at 
400g and 4 °C. The supernatant was removed and the cells resuspended in 20 ml of 
1× HBSS and stored on ice.

Isolation of PBMCs. Whole blood was obtained from four donors (two female, 
two male). The extracted blood was collected in heparin tubes (GP Supplies) 
and processed immediately. For each donor, PBMCs were isolated according to 
the manufacturer’s instructions for Ficoll extraction (pluriSelect). Briefly, blood 
from two heparin tubes (approximately 8 ml) was combined, diluted in 1× PBS 
and carefully added to a 50-ml tube containing 15 ml of Ficoll. The tubes were 
centrifuged for 30 min at 500g (minimum acceleration and deceleration). The 
interphase was carefully collected and diluted with 1× PBS + 2 mM EDTA. After a 
second centrifugation, the supernatant was discarded and the pellet resuspended in 
2 ml of 1× PBS + 2 mM EDTA and stored on ice.

Preparation of the reference sample. Cell counting was performed using an 
automated cell counter (TC20 Automated Cell Counter, Bio-Rad Laboratories). 
The reference sample was calculated to include human PBMCs (60%), mouse 
colon cells (30%), and HEK293T (6%, RFP-labeled human cell line), NIH3T3 
(3%, GFP-labeled mouse cells) and MDCK (1%, TurboFP650-labeled dog cells) 
cells. To adjust for cell integrity loss during sample processing, we measured 
the viability during cell counting and accounted for an expected viability loss 
after cryopreservation (10% for cell lines and PBMCs; 50% for colon cells21). 
All single-cell solutions were combined in the proportions mentioned above 
and diluted to 250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of 
cell suspension was aliquoted into cryotubes and gently mixed with a freezing 
solution (final concentration 10% dimethylsulfoxide; 10% heat-inactivated FBS). 
Cells were then frozen by gradually decreasing the temperature (1 °C min−1) to 
−80 °C (cryopreserved), and stored in liquid nitrogen. MARS-Seq and Smart-Seq2 
experiments were performed to validate sample quality and composition before 
distributing aliquots to the partners.

Sample processing. Samples were stored at −80 °C on arrival. Before processing, 
samples were de-frozen in a water bath (37 °C) with continuous agitation until the 
material was almost thawed. The entire volume was transferred to a 15-ml Falcon 
tube using a 1,000-µl tip (wide-bored or cut tip) without mixing by pipetting; 
1,000 µl of prewarmed (37 °C) Hibernate-A was added drop-wise while gently 
swirling the sample. The sample was then rested for 1 min. An additional 2,000 µl 
of prewarmed (37 °C) Hibernate-A was added drop-wise while gently swirling the 
sample. The sample was again rested for 1 min. Another 2,000 µl of prewarmed 
(37 °C) Hibernate-A was added drop-wise while gently swirling the sample and the 
sample was rested for 1 min. Then, 3,000 µl of prewarmed (37 °C) Hibernate-A was 
added drop-wise and the Falcon tube inverted six times. The sample was rested for 
1 min. An additional 5,000 µl of prewarmed (37 °C) Hibernate-A was added drop-
wise and the Falcon tube inverted six times. The sample was rested for 1 min. It was 
then centrifuged at 400g for 5 min at 4 °C (pellet clearly visible). The supernatant 
was removed until 500 µl remained in the tube. The pellet was resuspended by 
gentle pipetting. Then 3,500 µl of 1× PBS + 2 mM EDTA was added and the sample 
stored on ice until processing. Before FACS isolation, cells were filtered through 
a nylon mesh and 3 µl DAPI was added before gentle mixing. During FACS 
isolation, DAPI-positive cells were excluded to remove dead and damaged cells. 
Furthermore, the exclusion of GFP-positive cells simulated the removal of a cell 
type from a complex sample. Supplementary Fig. 27 shows representative FACS 
plots and gating strategies.

ScRNA-seq library preparation. For a detailed sample processing description, see 
Supplementary Notes.

Data analysis. For primary data preprocessing, clustering, sample deconvolution 
and annotation, and reference datasets, see Supplementary Notes.

MatchSCore2. To systematically assign cell identities to unannotated cells coming 
from different protocols, we used matchSCore2, a mathematical framework 
for classifying cell types based on reference data (https://github.com/elimereu/
matchSCore2). The reference data consist of a matrix of gene expression 
counts in individual cells, the identity of which is known. The main steps of the 
matchSCore2 annotation are the following:

 (1) Normalization of the reference data. Gene expression counts are 
log(normalized) for each cell using the natural logarithm of 1 + counts per 
10,000. Genes are then scaled and centered using the ScaleData function in 
the Seurat package.

 (2) Definition of signatures and their relative scores. For each of the cell types 
in the reference data, positive markers were computed using Wilcoxon’s 
rank-sum test. The top 100 ranked markers in each cell type were used as 
the signature for that type. To each cell, we assigned a vector x = (x1, .., xn) of 
signature scores, where n is the number of cell types in the reference data. The 
ith signature score for the kth cell is computed as follows:

Scorek ¼
X

j in J
zj k

where J is the set of genes in signature i, and zjk represents the z-score of gene 
j in the kth cell.

 (3) Training of the probabilistic model on the reference data.

We proposed a supervised multinomial logistic regression model, which uses 
enrichment of the signature of each reference cell type in each cell to assign identity 
to that cell. In other words, for each cell k and signature i, we calculate the ith 
cell-type signature score xi in the kth cell as described in point 2. The distribution 
of the signature scores is preserved, independent of which protocol is used (see 
Supplementary Figs. 28 and 29). More specifically, we defined the variables x1, 
…, xn, where xi is the vector in which the scores for signature i of all cells are 
contained. Then we used xi as the predictor of a multinomial logistic regression.

The model assumes that the number of cells from each type in the training 
reference data T1, T2, …,Tn are random variables and that the variable T = (T1, T2, 
…,Tn) follows a multinomial distribution M(N, π = (π1, …, πn)), where πi is the 
proportion of the ith cell type and N is the total number of cells.

To test the performance of the model, training and test sets were created by 
subsampling the reference into two datasets, maintaining the original proportions 
of cell types in both sets. The model was trained by using the multinom function 
from the nnet R package (decay = 1 × 10−4, maxit = 500). To improve the 
convergence of the model function, xi variables were scaled to the interval [0,1].

Cell classification. For each cell, model predictions consisted of a set of probability 
values per identity class, and the highest probability was used to annotate the cell if 
it was >0.5; otherwise the cell remained unclassified.

Model accuracy. To evaluate the fitted model using our reference datasets, we 
assessed the prediction accuracy in the test set, which was around 0.9 for human 
and 0.85 for mouse reference. We further assessed matchSCore2 classifications 
in datasets from other sequencing methods by looking at the agreement between 
clusters and classification. Notably, the resulting average agreement was 80% 
(range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), whereas the rate for 
unclassified cells was <2%.

Down-sampling. To decide on a common down-sampling threshold for 
sequencing depth per cell, we inspected the distribution of the total number of 
reads per cell for each technique, and chose the lowest first quartile (fixed to 
20,000 reads per cell). We then performed stepwise down-sampling (25%, 50% 
and 75%) using the zUMIs down-sampling function. We omitted cells that did 
not achieve the required minimum depth (see Supplementary Table 6). Notably, 
stochasticity introduced during down-sampling did not affect the results of the 
present study, as exemplified by the consistent numbers of detected molecules 
across different down-sampling iterations (see Supplementary Fig. 10).

Estimation of dropout probabilities. We investigated the impact of dropout 
events in HEK293T cells, monocytes and B cells extracted for each technique 
on down-sampled data (20,000 reads per cell). For datasets with >50 cells from 
the selected populations, we randomly sampled 50 cells to eliminate the effect of 
differing cell number. The dropout probability was computed using the SCDE R 
package45. SCDE models the measurements of each cell as a mixture of a negative 
binomial process to account for the correlation between amplification and 
detection of a transcript and its abundance, and a Poisson process to account for 
the background signal. We then used estimated individual error models for each 
cell as a function of expression magnitude to compute dropout probabilities using 
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SCDE’s scde.failure.probability function. Next, we calculated the average estimated 
dropout probability for each cell type and technique. To integrate dropout 
measures into the final benchmarking score, we calculated the area under the curve 
of the expression prior and failure probabilities (see Fig. 2f and also Supplementary 
Table 7). We expected that protocols resulting in fewer dropouts would have 
smaller areas under the curve.

Quantification of variance introduced by batches. To quantify the amount of 
variance that is introduced by batches (protocols, processing units or experiments), 
we used the top 20 PCs and the s.d. of each PC, previously calculated on HVGs. 
Next, using the pcRegression function of kBET R package23, we regressed the 
batch covariate (protocols/processing units/experiments as categories defined 
in the kBET model) and each PC to obtain the coefficient of determination as 
an approximation of the variance explained by batches, and the proportions of 
explained variance in each PC. We either reported the percentage of the variance 
that correlates significantly with the batch in the first 20 PCs, or R-squared 
measures of the model for each PC.

Cumulative number of genes. The cumulative number of detected genes in the 
down-sampled data was calculated separately for each cell type. For cell types 
with >50 cells annotated, we randomly selected 50 cells and calculated the average 
number of detected genes per cell after 50 permutations over n sampled cells, 
where n is an increasing sequence of integers from 1 to 50.

GO enrichment analysis. To compare functional gene sets between single-cell and 
single-nucleus datasets, we performed Gene Ontology (GO) enrichment analysis 
on the set of protocol-specific genes using simpleGO (https://github.com/iaconogi/
simpleGO). For each cell type (HEK293T cells, monocytes and B cells), we selected 
two gene sets extracted from the cumulated genes and using the maximum number of 
detected cells common to all three Chromium versions: (1) genes that were uniquely 
detected in the intersection of Chromium (v.2) and (v.3), but not in Chromium (sn), 
and (2) genes that were uniquely identified with Chromium (sn). For each of the gene 
sets, we identified the union over cell types before applying simpleGO.

Correlation analysis. Pearson’s correlations across protocols were computed 
independently for B cells, monocytes and HEK293T cells. For each cell type, cells 
were down-sampled to the maximum common number of cells across all protocols. 
Gene counts of commonly expressed genes (from datasets down-sampled to 20,000 
reads) were averaged across cells before computing their Pearson’s correlations. 
The corplot library was then used to plot the resulting correlations. Protocols were 
ordered by agglomerative hierarchical clustering.

Silhouette scores. To measure the strength of the clusters, we calculated the 
ASW24. The down-sampled data (20,000 reads per cell) were clustered by Seurat46, 
using graph-based clustering with the first eight PCs and a resolution of 0.6. We 
then computed an ASW for the clusters using a Euclidean distance matrix (based 
on PCs 1–8). We reported the ASW for each technique separately.

Dataset merging. Dataset integration across protocols is challenging and we 
applied different tools to assess the integratability of the sc/snRNA-seq methods, 
while conserving biological variability. To integrate datasets, we used Seurat46, 
harmony47 and scMerge25, evaluated the results separately and averaged the 
integration capacity of the protocols into a joint score. We combined down-
sampled count matrices using the sce_cbind function in scMerge, which includes 
the union of genes from different batches. Although both harmony and Seurat 
integration apply similar preprocessing steps (log(normalization), scaling and 
HVG identification), as implemented in the Seurat tool, scMerge uses a set of genes 
with stable expression levels across different cell types, and then creates pseudo-
replicates across datasets, allowing the estimation and correction for undesired 
sources of variability. However, for all three alignment methods, Seurat was applied 
to perform clustering and Uniform Manifold Approximation and Projection 
(UMAP) after the protocol correction, to minimize the variability related to the 
downstream analysis. The clustering accuracy metric was used together with 
the mixability score to quantify the success of the integration. Omitting the cell 
integration step before visualizing the datasets together in a single tSNE/UMAP 
resulted in a protocol-specific distribution with cell types scattered to multiple 
clusters (see Supplementary Fig. 30).

Clustering accuracy. To determine the clusterability of methods to identify cell 
types, we measured the probability of cells being clustered with cells of the same 
type. Let Ck, k∈{1,…,N} represent the cluster of cells corresponding to a unique 
cell type (based on the highest agreement between clusters and cell types), and Tj, 
j∈{1,…,S} represent the set of different cell types, where C⊆T. For each cell type Tj, 
we compute the proportion pjk of Tj cells that cluster in their correct cluster Ck. We 
define the cell-type separation accuracy as the average of these proportions.

Mixability. To account for the level of mixing of each technology, we used kBet23 
to quantify batch effects by measuring the rejection rate of Pearson’s χ2 test for 
random neighborhoods. To make a fair comparison, kBet was applied to the 

common cell types separately by subsampling batches to the minimum number of 
cells in each cell type. Due to the reduced number of cells, the option heuristic was 
set to ‘False’, and the testSize was increased to ensure a minimum number of cells.

Mixability was calculated by averaging cell-type-specific rejection rates.

Benchmarking score. To create an overall benchmarking score against which 
to compare technologies, we considered six key metrics: gene detection, overall 
level of expression in transcriptional signatures, cluster accuracy, classification 
probability, cluster accuracy after integration and mixability. Each metric was 
scaled to the interval [0,1], then, to equalize the weight of each metric score, 
the harmonic mean across these metrics was calculated to obtain the final 
benchmarking scores. Gene detection, overall expression in cell-type signatures 
and classification probabilities were computed separately for B cells, HEK293T 
cells and monocytes, and then aggregated by the arithmetic mean across cell 
types. Notably, the choice of protocol to create the reference dataset (Chromium) 
for initial cell annotation had no impact on the outcome of the present study (see 
Supplementary Fig. 31).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data and processed gene expression files are freely available 
through the Gene Expression Omnibus (accession no. GSE133549).

Code availability
All code for the analysis is provided as supplementary material. All code is also 
available under https://github.com/ati-lz/HCA_Benchmarking and https://github.
com/elimereu/matchSCore2.
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Replication Single-cell sequencing of the same reference sample was replicated with 13 protocols for comparative analysis. 

Randomization Not applicable.

Blinding All partners had knowledge of the reference sample design.  
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK-293T_RFP: AMSBIO; MDCK_FP650: Cell Trend; NIH3T_GFP: Cell biolabs

Authentication Cell lines authenticated by commercial providers. 

Mycoplasma contamination The cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Not applicable. All lines were ordered from commercial sources. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, C57BL/6 (LGR5-gfp-creERT2), 2 month, 5 male and 6 female.

Wild animals The study did not involve wild animals. 

Field-collected samples The study did not involve samples collected in the field. 

Ethics oversight No ethical approval was required. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Four healthy donors (2 male / 2 female) of Caucasian ancestry (age 30-40 years). 

Recruitment Donor recruitment within the local work environment of the leading institute. 

Ethics oversight This study was approved by the Parc de Salut MAR Research Ethics Committee (reference number: 2017/7585/I). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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