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In sporadic colorectal cancer (CRC), KRAS are alter-
native to BRAF mutations and occur, respectively, in 30
and 10% of cases. Few reports addressed the association
between KRAS-BRAF mutations and tumour progression
specifically in sporadic microsatellite-stable (MSS) CRC.
We screened KRAS and BRAF in 250 MSS primary CRC
and 45 lymph node (LN) metastases and analysed the
pathological features of the cases to understand the
involvement of KRAS-BRAF activation in progression
and metastasis. Forty-five per cent of primary MSS CRCs
carried mutations in at least one of these genes and
mutations were associated with wall invasion (P =0.02),
presence and number of LN metastases (P=0.02 and
P =0.03, respectively), distant metastases (P = 0.004) and
advanced stage (P =0.01). We demonstrated that KRAS
and BRAF are alternative events in Tis and T1 MSS CRC
and, KRAS rather than BRAF mutations, contributed to
the progression of MSS CRC. The frequency of KRAS
and/or BRAF mutations was higher in LN metastases
than in primary carcinomas (P =0.0002). Mutated LN
metastases displayed KRAS associated or not with BRAF
mutations. BRAF mutations were never present as a single
event. Concomitant KRAS and BRAF mutations in-
creased along progression of MSS CRCs, suggesting that
activation of both genes is likely to harbour a synergistic
effect.
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KRAS and BRAF are members of the MAP kinase
(MAPK) pathway, which is hyperactivated in approxi-
mately 30% of all cancers (Hoshino et al., 1999). The
identification of mutationally activated KRAS and
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BRAF alleles in several tumour models supports the
importance of this signalling pathway in cancer progres-
sion (Davies et al., 2002; Rajagopalan et al., 2002). The
RAS/RAF/MAPK pathway regulates cell proliferation,
differentiation, senescence and apoptosis. In addition,
several reports have shown that MAPK activation,
owing to oncogenic RAS and BRAF mutations, is likely
to be involved in promoting cellular invasiveness in
different tumour models (Fugimoto et al., 2001;
Sumimoto et al., 2004; Melillo et al., 2005). Moreover,
it has been shown that G112V RAS mutation has a
50-fold higher transforming and oncogenic activity in
NIH3T3 cells than V60OE mutation of BRAF. By itself,
BRAF V600E mutation shows a 138-fold transforming
and oncogenic activity over wild-type BRAF (Davies
et al., 2002).

In sporadic colorectal cancer (CRC), oncogenic
mutations affecting KRAS and BRAF occur in about
30 and 10% of the cases, respectively (Rajagopalan
et al., 2002; Yuen et al., 2002; Brink et al., 2003; Wang
et al., 2003; Oliveira et al., 2003, 2004, 2005). KRAS
mutations have been observed in colorectal tumours
independently of their microsatellite instability (MSI)
status. In sporadic MSI CRCs, KRAS mutations are
inversely associated to the oncogenic BRAFY*™F muta-
tion, the latter occurring in about 40% of the cases
(Rajagopalan et al., 2002; Yuen et al., 2002; Lipton
et al., 2003; Oliveira et al., 2003; Wang et al., 2003;
Domingo et al., 2004; Fransen et al., 2004; Koinuma
et al., 2004), suggesting that each mutation can induce
similar cellular effects and signal through the same
pathway. However, the recent report by Solit et al.
(20006), using MEK (a downstream effector of KRAS
and BRAF) inhibitors showed that BRAF mutant cell
lines responded differently than KRAS mutant ones,
raising the possibility that KRAS and BRAF mutant
cancer cells might be differentially dependent on
signalling mechanisms that involve MEK.

Although BRAF mutations have been observed
mainly in sporadic MSI CRC tumours, approximately
5% of microsatellite stable (MSS) CRC cases also show
mutations within BRAF gene (Rajagopalan et al., 2002;
Yuen et al., 2002; Lipton et al., 2003; Oliveira et al.,
2003, 2005; Wang et al., 2003; Fransen et al., 2004;



Koinuma et al., 2004). In contrast to sporadic MSI
CRC, data on the presence of both KRAS and BRAF
oncogenic mutations in sporadic MSS CRC and their
relationship with tumour progression are scarce.

In order to understand the putative involvement of
alterations in these two genes in the progression of MSS
sporadic colorectal carcinoma, we screened KRAS and
BRAF mutations in a series of 250 MSS CRCs and 45
lymph node (LN) metastases (from 28 distinct cases),
and studied the pathological features of these cases.

We found mutations in at least one of the genes
(KRAS-BRAF) in 45.2% (113/250) primary MSS CRCs,
which is in accordance with what has been described
previously (KRAS-BRAF: 30-50%; KRAS: 27-45%;
BRAF: 2-6%) (Oliveira et al., 2003; Deng et al., 2004;
Fransen et al., 2004; Nagasaka et al., 2004; Ince et al.,
2005; Lubomierski et al., 2005; Samowitz et al., 2005;
Velho et al., 2005).

We studied the association between pathological
parameters of MSS CRCs and the presence of KRAS—
BRAF oncogenic mutations (Table 1).

We observed an association between the presence of
KRAS-BRAF mutations and wall invasion (P=0.02).
We found that Tis and T1 MSS CRC had either single
KRAS or BRAF mutations and never displayed
concomitant mutations (Figure la). It was previously
shown that KRAS activation occurs in the first steps of
colorectal carcinoma progression, along the adenoma-—
carcinoma sequence (Vogelstein et al., 1988; Fearon and
Vogelstein, 1990). According to the literature, BRAF
mutations were more frequently found in premalignant
colon polyps and early rather than in advanced colo-
rectal carcinomas (Rajagopalan et al., 2002; Yuen et al.,
2002; Ikehara et al., 2005). Similar observations have
been made in other tumour models, namely activating
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BRAF mutations have been detected in a high propor-
tion of naevi and benign melanocytic skin lesions
(Pollock et al., 2003; Yazdi et al., 2003), although in
this specific model, activating mutations of BRAF have
also been identified in approximately 90% of melano-
mas (Davies et al., 2002; Kumar et al., 2003). Our results
confirm that KRAS and BRAF mutations alone are
frequent and alternative in CRCs with no extension
through the muscularis propria (Tis and TI1), as
previously demonstrated for MSI CRC (Rajagopalan
et al., 2002; Oliveira et al., 2003). Presumably, in these
tumour stages, BRAF mutations do not occur con-
comitantly with KRAS mutations because their com-
bined signalling is incompatible with proliferation, as an
excess of extracellular signal-regulated protein kinase
(ERK) signalling could lead cells to stop cycling and
differentiate or to entry senescence (Marshall, 1995;
Sewing et al., 1997; Woods et al., 1997; Kerkhoff and
Rapp, 1998).

The frequency of concomitant KRAS and BRAF
mutations increased along with the depth of wall
invasion: T2 — 2.8% (1/36), T3 — 3.5% (6/173) and T4
—9.4% (3/32).

In T2, T3 and T4 CRC, the frequency of KRAS
mutations increase either owing to the acquisition of
KRAS mutations in BRAF-negative CRC or to the
accumulation of KRAS and BRAF mutations. KRAS
activation is likely to confer tumour cells a more
invasive behaviour. This relationship between the
presence of KRAS mutations and increased ability of
tumour cells to invade and progress through the wall
may be explained by the putative capability of mutant
KRAS to (i) disrupt epithelial cell polarity both by
destabilizing adherens junctions and by remodelling
cell-matrix interactions through the modulation of

Table 1 Analysis of pathological features of MSS sporadic CRC in stratified groups of tumours with KRAS mutations alone, BRAF mutations
alone and with concomitant mutations in KRAS and BRAF
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Pathological features Total KRAS mut BRAF mut KRAS+ BRAF mut KRAS+ BRAF wild-type P-value
n=250 n=93 n=10 n=10 n=137

Primary tumour (T) n=250 93 10 10 137 0.02
Tis 2 2 (100%) 0 (0.0%) 0 (0.0%) 0 (0.0%) —
Tl 7 3 (42.9%) 2 (28.6%) 0 (0.0%) 2 (28.6%) —
T2 36 14 (38.9%) 0 (0.0%) 1(2.8%) 21 (58.3%) —
T3 173 58 (33.5%) 7 (4.0%) 6 (3.5%) 102 (59.0%) —
T4 32 16 (50%) 1 (3.1%) 3(9.4%) 12 (37.5%) —

Lymph nodes n=250 93 10 10 137 0.02
Absent 132 40 (30.3%) 5(3.8%) 3(2.3%) 84 (63.6%) —
Present 118 53 (44.9%) 5(4.2%) 7 (5.9%) 53 (44.9%) —

Regional lymph nodes (N) n=250 93 10 10 137 0.03
NO 132 40 (30.3%) 5(3.8%) 3(2.3%) 84 (63.6%) —
N1 58 21 (36.2%) 3(5.2%) 3 (5.2%) 31 (53.4%) —
N2 60 32 (53.3%) 2 (3.3%) 4 (6.7%) 22 (36.7%) —

Distant metastases (M) n=192 70 6 1 115 0.004
Absent 152 48 (31.6%) 4 (2.6%) 0 (0%) 100 (65.8%) —
Present 40 22 (55.0%) 2 (5.0%) 1 (2.5%) 15 (37.5%) —

TNM staging n=250 93 10 10 137 0.01
0+1+1I 129 38 (29.5%) 5(3.9%) 3(2.3%) 83 (64.3%) —
Mnr+1v 121 55 (45.5%) 5 (4.1%) 7 (5.8%) 54 (44.6%) —
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Figure 1 KRAS-BRAF mutation frequency in MSS CRCs. Tumours were obtained from the Hospital of S Joao (Porto, Portugal), the
Centre d’Investigacions en Bioquimica i Biologia Molecular Vall d’Hebron (CIBBIM), (Barcelona, Spain) and from the Saint-Antoine
Hospital (Paris, France). The criteria used to select the patient were as follows: (1) none of the patients had a positive family history of
cancer and (2) all sporadic CRCs and metastases were MSS. Only MSS CRC carcinomas analysed according to Umar ez al. (2004)
were selected for this study. Sample collection was carried out in accordance with previously established ethical protocols. Frozen
material or paraffin embedded tissue from 250 primary colorectal carcinomas and 28 LN metastases (one LN metastasis per case) were
analysed. In five cases, several LN metastases were analysed (two additional LN metastases in two cases; four additional LN
metastases in two cases and five additional LN metastases in another case). Hematoxylin and eosin (HE)-stained sections were used to
classify all tumours and allowed their macrodissection. High molecular weight DNA was isolated using standard methods from total
sections of the tumours, whenever tumour cells occupied more than 50% of tumour tissue or from macrodissected areas with at least
50% of tumour cells. Analysis of specific hotspot mutations in KRAS exon 1 and BRAF exon 15 was performed in 295 primary CRC
and LN metastases. Pre-screening of BRAF and KRAS was either performed by PCR-SSCP, PCR-DGGE or direct sequencing
depending on the method of analysis in each collaborative centre (Oliveira et al., 2004). The statistical analysis was performed using the
Student’s ¢ test, y*> test or Fisher’s statistical test when appropriated. Differences were taken to be significant at P<0.05.
(a) Distribution of KRAS and/or BRAF mutation according to the wall invasion of MSS primary CRCs. The histopathological
classification of each specimen was studied by HE-stained tissue sections by board-certified pathologist from each of the Institutions
participating in this study. Tumor-node-metastasis system was used for tumour staging: stage 0 represents carcinoma in situ, stage I
represents tumours that invades the submucosa or the muscularis propria, stage II represents tumours that invade through the
muscularis propria into the subserosa or non-peritonealized pericolic or perirectal tissues, or tumours that perforate the visceral
peritonenum or directly invade other organs or structures, stage III represents any tumour with regional LN metastases and stage IV
represents tumour with confirmed distant metastases. (b) KRAS and/or BRAF mutation frequency in MSS CRC LNneg, MSS CRC
LNpos and LN metastasis.

integrin expression, maturation and activity (Hughes
et al., 1997; Yan et al., 1997; Schramm et al., 2000),
(i1) promote the passage of tumour cells through the
epithelial basement membrane by stimulating the
expression and/or activation of MMPs and (iii) increase
cell motility in stromal tissue through the activation of
RHO family of small-GTPases (Yamamoto et al., 1995;
Thiery, 2002; Liao et al., 2003). The number of cases
with concomitant KRAS and BRAF mutations also
increases in advanced carcinomas, suggesting that
activation of both genes may cooperate in tumour
progression. As for BRAF alone, as its activation is
more prominent in early stages rather than in advanced
stages of MSS CRC, we can hypothesize that BRAF
activation alone is not sufficient to induce cancer
progression in a high frequency of MSS CRC. Its
activation in few advanced cases suggests that, in these
CRCs, BRAF activation may contribute to tumour
progression by protecting cells from apoptosis as
suggested by Hingorani et al. (2003) and Ikehara ez al.
(2005).
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A significant association was found between the
presence of LN metastases and KRAS-BRAF mutations
(P=0.02) (Table 1 and Figure 1b). The frequency of
KRAS mutations alone was higher in MSS CRC LNpos
(44.9% — 53/118) as compared to MSS CRC LNneg
(30.3% —40/132). The number of carcinomas with BRAF
mutations alone was low and similar in MSS CRC
LNneg (3.8% — 5/132) and MSS CRC LNpos (4.2% — 5/
118). When comparing the frequency of cases with
concomitant KRAS and BRAF mutations in MSS CRC
LNneg (2.3% — 3/132) and MSS CRC LNpos (5.9% -7/
118), we verified that the latter showed a 2.6-fold increase
in the frequency of cases with both mutations, suggesting
that concomitant activation of BRAF and KRAS may
have a synergistic effect in promoting LN metastasis.

The association between the presence of LN meta-
stases and increased mutation frequency was also
verified concerning the number of nodes affected
(P=0.03). The frequency of concomitant mutations of
KRAS and BRAF was higher in N1 (5.2%) and N2
(6.7%) when compared with NO (2.3%) carcinomas.



Significant associations were also found between the
presence of KRAS/BRAF mutations and positivity for
distant metastases (P=0.004), owing to an increased
frequency of KRAS mutations in cases with distant
metastases. These two observations relate KRAS muta-
tions with colorectal tumour invasion and suggest that
KRAS activation is likely to be crucial to render tumour
cells the ability of moving and invading not only LNs but
also distant organs (Vogelstein et al., 1988; Fearon and
Vogelstein, 1990; Pretlow, 1995; Pollock et al., 2005). In
contrast to what has been observed for KRAS, the
frequency of BRAF mutations alone was not different in
primary MSS CRC without and with distant metastases.

The frequency of mutated cases (either KRAS or
BRAF or both KRAS and BRAF mutations) in LN
metastases (82.1% 23/28) was higher in comparison to
primary carcinomas (P =0.0002). The detailed analysis
of LN metastases showed that all mutated metastases
showed KRAS mutations. Our results suggest that the
majority of MSS carcinomas need KRAS activation,
through mutation, to be able to metastasize and this acti-
vation is crucial for neoplastic cells to acquire invasive
potential (Schmidt-Kittler et al., 2003; Campbell and
Der, 2004; Carter et al., 2004). In contrast, none of the
mutated LN metastasis had BRAF mutations as a single
event (Figure 2). These results emphasize the role of
KRAS activation in metastasis and argues against BRAF
activation by itself, as a pivotal genetic event in
promoting MSS CRC metastasis.

Tumor LN metastases
1D KRAS BRAF KRAS BRAF
1 G12D V600E G12D V600E
2 G12D V600E G12D V600E
3 G12A V600E G12A  V600E
4 G12D K601E G12D K601E
5 G12D K601Q@ | G12D K601Q
ﬂ G12D G12D
7 G12D G12D
8 G12D G12D
9 G12D G12D
10 G12D G12D
11 G12D G12D
12 G12D G12D
G12D G12D
14 G12V G12V
15 G128 G12S
16 G12D G12D V600E
1174 V600E G12D V600E
18 V600E G12D V600E
19 G12D K601Q
20 G12D D594K
21 G13D
122 G13D
23 G12D
[24] G128
125 | G13D
26
27
28

Figure 2 Description of KRAS and BRAF oncogenic mutations in
a series of cases with available LN metastasis and matched primary
CRC. H, Multiple metastases analysed.
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As 10 of 28 (35.7%) LN metastases harbour
concomitant KRAS and BRAF mutations, we can
assume that ‘the lethality of this combination’ in Tis
and Tl carcinomas can be suppressed by dominant
survival factors or subsequent oncogenic activations in
more advanced cancers.

In 43.4% (10/23) of the mutated LN metastasis
mutations of both genes were detected, reinforcing the
idea that activation of both genes is likely to play a
synergistic role in LN metastasis. This observation is
supported by the results of Solit et al. (2006) which
showed that KRAS and BRAF may signal through
different signalling pathways and whereas BRAF
mutant cells are preferentially reliant on MEK-ERK
signalling, KRAS mutant cells have multiple other
targets, such as phosphatidylinositol 3’-kinase (PI(3)K)
and RalGDS, reducing the requirement for MEK-ERK
activation.

In five of 10 LN metastases with concomitant KRAS
and BRAF mutations, a similar picture was observed in
respective primary tumours; in the remaining five cases,
the mutation pattern in LN metastases was different
from primary tumours: one case acquired a BRAF
mutation (16), two acquired KRAS mutations (17,18),
and two acquired mutations in both genes (19,20)
(Figure 2).

In five LN metastases (cases 24-28), no KRAS or
BRAF mutations were identified, suggesting that alter-
native pathways are also responsible for colon cancer
metastasis (Figure 1b and 2). In cases 24 and 25, KRAS
mutations were identified in the corresponding primary
tumours. Extra LN metastases for these two cases (three
for case 24 and four for case 25) were analysed and
found to be also wild type for both KRAS and BRAF in
accordance with what was found in the first ones. This
observation suggests that populations of carcinoma cells
heterogeneous with respect to wild-type and mutant
KRAS were probably present in the primary carcinoma,
but the metastatic clone derived from a KRAS negative
population, as reported previously (Al-Mulla, 1998).

In cases 6, 13 and 22, we analysed multiple metastases
per case. Within each case, the same pattern of
mutations was observed in the different LNs analysed.
In cases 6 and 13, we demonstrated that all independent
metastases, as well as the primary tumours, displayed a
GI12D KRAS mutation demonstrating that a mutation
in KRAS occurred in the primary tumour and was
maintained in all metastases. In case 22, the primary
tumour did not display a KRAS mutation, but the study
of five LN metastases showed that all harboured the
same GI13D KRAS mutation, suggesting that this
alteration was acquired before LN invasion and was
pivotal for metastasis. Our data is in accordance to
Bernards and Weinberg (2002), who suggested that
important components of the genotype of metastasis are
already implanted early in tumorigenesis, in small
primary tumour cells populations that have the ability
to dispatch metastatic pioneers to distant sites in the
body.

In the present series, we were unable to detect a
specific profile of KRAS and BRAF mutations, namely
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codon affected (KRAS codons 12 and 13; and BRAF
codons 600 and 601) nor amino-acid change associated
with tumour progression or metastasis, although specific
KRAS mutations have been previously correlated with
more aggressive tumour phenotypes (Finkelstein ez al.,
1993; Moerkerk et al., 1994; Span et al., 1996; Andreyev
et al., 2001).

Overall, the results obtained in the present study are
supported by the report of Ince et al. (2005), which show
additional evidence that KRAS and BRAF mutations
are related to disease severity and bad prognosis in CRC
patients and demonstrate very elegantly that patients
with CRC displaying either KRAS (35%) or BRAF
(5.6%) or both KRAS and BRAF (0.4%) mutations had
worse prognosis, shorter median survival and shorter
overall survival than those with wild-type KRAS and
BRAF genotype.
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